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The equation of state for two-center Lennard-Jones fluids originally proposed
by Mecke et al. [Int. J. Thermophys. 18:683–698 (1997); Erratum, Int. J. Ther-
mophys. 19:1495 (1998)] has been revised to extend its applicability to large
molecular elongations. The equation of state is written in the form of a general-
ized augmented van der Waals equation for the Helmholtz energy, F=FH+FA,
where FH accounts for the hard-body interaction and FA for the attractive dis-
persion forces. The revised EOS is constructed on the basis of previously
published simulation data for 2CLJ fluids with reduced elongations L=0.0,
0.22, 0.3292, 0.505, and 0.67 and results from new extensive simulations for two-
center Lennard-Jones fluids with L=0.8 and 1.0. The revised equation of state
provides a very good description of the fluid state behavior over a wide range of
temperatures and pressures as well as of the vapor-liquid equilibrium phase
behavior for the two-center Lennard-Jones fluids with L ranging from 0.0
to 1.0.

KEY WORDS: equation of state; molecular simulation; thermodynamic
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1. INTRODUCTION

Two-center Lennard-Jones (2CLJ) fluids might be viewed as some of the
simplest models of fluids with non-spherical molecules. In a series of papers
[1–3], a physically based equation of state (EOS) was developed for
2CLJ fluids of molecules with short and moderate reduced elongations L.



The EOS is written in the form of a generalized augmented van der Waals
equation for the Helmholtz energy, F=FH+FA, where FH accounts for the
hard-body interactions and FA for the attractive dispersion forces. The
hard-body term FH was represented by the expression due to Boublík and
Nezbeda [4] based on the scaled particle theory with a temperature
dependence of the packing fraction resulting from the hybrid Barker–
Henderson perturbation theory [5]. The construction of the attractive
contribution FA was accomplished with the Setzmann–Wagner optimiza-
tion procedure [6] on the basis of virial coefficients and critically assessed
computer simulation data for 2CLJ fluids with L ranging from 0.0 to
0.67 [3].

Since the original EOS was fitted to simulation data for the 2CLJ
fluids with L [ 0.67, its accuracy abruptly deteriorates for L > 0.67 as was
shown by Lísal et al. [7]. Hence, the purpose of this work is to extend the
applicability of the original EOS to 2CLJ fluids with L > 0.67. We gener-
ated new computer simulation data for 2CLJ fluids with L=0.8 and 1.0 in
the single-fluid phase and vapor-liquid coexistence regions, see Lísal et al.
[7] for details. In this paper, we use these new simulation data together
with the previously published simulation data for the 2CLJ fluids with
L=0.0, 0.22, 0.3292, 0.505, and 0.67 [3] to revise the original EOS for the
2CLJ fluids and develop an EOS valid for the entire range of elongations
up to L=1.0.

2. FUNCTIONAL FORM OF THE EQUATION OF STATE

We consider a 2CLJ fluid characterized by the energy and size
parameters e and s, respectively, and by the reduced elongation L=l/s;
l is the distance between the interaction sites. We denote all quantities in
reduced units, such as the reduced temperature Tg=kT/e, the reduced
density rg=rs3, the reduced pressure pg=ps3/e, and the reduced residual
internal energy ug=U/(Ne); k is Boltzmann’s constant and N is the
number of molecules.

The 2CLJ-EOS [3] is written as

F(Tg, rg, L)=FH(Tg, rg, L)+FA(Tg, rg, L) (1)

The hard-body term FH is taken from Boublík and Nezbeda [4] as

FH

NkT
=(a2

p − 1) ln(1 − g)+
(a2

p+3ap) g − 3apg2

(1 − g)2 (2)
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where ap is the anisotropy parameter of a pseudocritical point (a critical
point given by the perturbation theory (PT) [8]) and g is the packing frac-
tion; ap is a function of L and is represented [3] by

ap=P1+P2L2+P3L7/2+P4L4 (3)

g depends linearly on rg and is given by a relation developed by Sager et al.
[1] and later modified by Mecke et al. [3] as

g=rg (g/r)p

a+(1 − a)(Tg/Tg
p )c

(4)

In Eq. (4), a=0.67793, c=0.3674, Tg
p is the temperature of a pseudocriti-

cal point, and (g/r)p is the ratio of density and packing fraction of a
pseudocritical point. Tg

p and (g/r)p are functions of L, and they are repre-
sented [3] by

Tg
p =

1
4
= P5+P6L

1+P7L+P8L2 for L=0.0

= P5+P6L
1+P7L+P8L2 for L > 0.0 (5)

(g/r)p=P9+P10L2+P11L5/2+P12L4 (6)

respectively. We refer readers to the original paper by Mecke et al. [3] for
additional details.

For the attractive term FA, Mecke et al. [3] have made an ansatz of
the form,

FA

NkT
=C

i
ci
1Tg

Tg
p

2mi 1rg

rg
p

2ni

aoi
p exp 5pi

1rg

rg
p

2qi6 (7)

where rg
p is the density of a pseudocritical point. rg

p is a function of L and
is represented [3] by

rg
p =

P13+P14L
1+P15L+P16L2 (8)

The coefficients ci as well as the exponents mi, ni, oi, pi, and qi are deter-
mined by the optimization procedure of Setzmann–Wagner [6] (see the
next section).
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3. DATA AND OPTIMIZATION PROCEDURE

We start with coefficients P1–P16 of Eqs. (3), (5), (6), and (8). These
equations represent L-dependence of the pseudocritical anisotropy param-
eter, the pseudocritical temperature, the pseudocritical ratio of density and
packing fraction, and the pseudocritical density, and they are obtained
from the fit of the PT results for 2CLJ fluids [8]. In the original EOS,
P1–P16 were fitted to the PT results for the 2CLJ fluids with L [ 0.67.
Hence, we performed the additional PT study for the 2CLJ fluids with
L > 0.67, and evaluated new values of ap, Tg

p , (g/r)p, and rg
p for the 2CLJ

fluids with L > 0.67. We used these new values together with the values of
ap, Tg

p , (g/r)p, and rg
p for the 2CLJ fluids with L [ 0.67 to obtain a new

set of coefficients P1-P16. New coefficients P1-P16 are listed in Table I.
In the original EOS, Mecke et al. [3] used critically assessed computer

simulation data (pressure-volume-temperature and internal energies) for
the 2CLJ fluids with L=0.0, 0.22, 0.3292, 0.505, and 0.67 to construct the
attractive term FA. Simulation data covered fluid phase regions in the range
of 0.4 [ Tg/Tg

p [ 5.0 and 0.0 [ rg/rg
p [ 3.1. In addition, they also utilized

explicitly calculated second virial coefficients as well as VLE data of

Table I. Revised Coefficients
P1–P16 for the Correlation

Eqs. (3), (5), (6), and (8)

i Pi

1 1.0
2 0.5296092
3 −0.4531784
4 0.4421075
5 34.037352
6 17.733741
7 0.53237307
8 12.860239
9 0.5256

10 3.2088804
11 −3.1499114
12 0.43049357
13 0.31258137
14 1.2240569
15 3.7974509
16 6.5490937
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Lotfi et al. [9] and Kriebel et al. [10]. Since the critical point of the
Lennard-Jones fluid is known with high accuracy, Mecke et al. [3] con-
strained the original EOS to

1“p
“r
2

TC, rC, LLJ

=0 1“
2p

“r2
2

TC, rC, LLJ

=0 (9)

with Tg
C=1.328, rg

C=0.3107, and LLJ=0.0 [2].

Table II. Coefficients ci and Exponents mi, ni, oi, pi, and qi for the Attractive Contribution
to the Helmholtz Energy FA/(NkT) Given in the Form of Eq. (7)

i ci mi ni oi pi qi

1 −0.64211055047× 10−1 −1.50 2.00 −3.00 0.0 0.0
2 0.17682583145× 10−2 −1.50 5.00 −2.00 0.0 0.0
3 −0.62963373291× 10+0 −1.00 1.00 0.00 0.0 0.0
4 −0.35320115512× 10+0 −1.00 1.00 1.00 0.0 0.0
5 0.11339264270× 10+2 −1.00 2.00 −3.00 0.0 0.0
6 −0.33311941616× 10+2 −1.00 2.00 −2.00 0.0 0.0
7 0.37022843830× 10+2 −1.00 2.00 −1.00 0.0 0.0
8 −0.18683743554× 10+2 −1.00 2.00 0.00 0.0 0.0
9 0.34566448842× 10+1 −1.00 2.00 1.00 0.0 0.0

10 −0.11216048862× 10−5 −1.00 10.00 −3.00 0.0 0.0
11 0.69315597535× 10+0 −0.50 1.00 −3.00 0.0 0.0
12 −0.95242644353× 10+0 −0.50 1.00 −2.00 0.0 0.0
13 0.13303429920× 10−1 −0.50 3.00 −1.00 0.0 0.0
14 −0.17518819492× 10−4 −0.50 9.00 −3.00 0.0 0.0
15 0.30942693727× 10−5 −0.50 10.00 −2.00 0.0 0.0
16 0.44671277084× 10−1 0.00 1.00 0.00 0.0 0.0
17 −0.84065404026× 10+0 0.00 2.00 −3.00 0.0 0.0
18 0.12662354443× 10+1 0.00 2.00 −2.00 0.0 0.0
19 −0.43706789738× 10+0 0.00 2.00 −1.00 0.0 0.0
20 0.34751432401× 10−5 0.00 9.00 0.00 0.0 0.0
21 −0.52988956334× 10−6 0.00 10.00 2.00 0.0 0.0
22 0.37399304905× 10−1 −3.00 1.00 −2.00 −1.0 1.0
23 −0.32905342462× 10+0 −2.00 1.00 0.00 −1.0 1.0
24 0.63121341882× 10−1 −2.00 3.00 0.00 −1.0 1.0
25 −0.20913100716× 10−2 −2.00 6.00 1.00 −1.0 1.0
26 −0.26852824281× 10−1 −1.00 3.00 2.00 −1.0 1.0
27 0.70733527178× 10−1 0.00 3.00 −1.00 −1.0 1.0
28 0.58291227149× 10−1 −4.00 1.00 −3.00 −1.0 2.0
29 −0.76337837062× 10−1 −4.00 1.00 0.00 −1.0 2.0
30 −0.37502524667× 10−1 −4.00 2.00 −3.00 −1.0 2.0
31 0.19201247728× 10−2 −4.00 6.00 −2.00 −1.0 2.0
32 −0.76922623587× 10−1 0.00 1.00 −3.00 −1.0 2.0
33 0.12939011597× 10+0 0.00 1.00 1.00 −1.0 2.0
34 −0.37539710780× 10−1 0.00 1.00 3.00 −1.0 2.0
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To extend the applicability of the original EOS to L > 0.67, we gener-
ated simulation data for 2CLJ fluids with L=0.8 and 1.0 that cover fluid
phase regions in the range of 0.4 [ Tg/Tg

p [ 5.0 and 0.0 [ rg/rg
p [ 3.1. In

addition, we calculated second virial coefficients for the 2CLJ fluids with
L=0.8 and 1.0 by a non-product algorithm [11] and VLE data for the
2CLJ fluids with L=0.8 and 1.0 by the Gibbs ensemble Monte Carlo
(GEMC) method [12]. Further, VLE data for the 2CLJ fluid with L=0.8
have been determined using the NpT ensemble with a test particle [13] and
for the 2CLJ fluid with L=1.0 have been determined by the GEMC
method [14], and we have used them.

The original data sets for the 2CLJ fluids with L=0.0, 0.22, 0.3292,
0.505, and 0.67 and the new data for the 2CLJ fluids with L=0.8 and 1.0
were utilized by the optimization procedure of Setzmann–Wagner [6].
In the Setzmann–Wagner procedure, a ‘‘bank of terms’’ is created by
prescribed sets for the exponents mi, ni, oi, pi, and qi in Eq. (7). From this
bank of terms, the most effective elements are selected by an algorithm
which combines a stepwise regression analysis with elements of an evolu-
tionary optimization method. Table II contains the exponents mi, ni, oi, pi,
and qi and coefficients ci obtained by this procedure for the attractive con-
tribution to the Helmholtz energy FA given in the form of Eq. (7). It is
worth noting that the optimization procedure results in the same number of
terms for the revised and original EOS.

4. RESULTS AND DISCUSSION

First, we compare how the revised and original EOS reproduce data
used for construction. For that purpose, we define standard deviations,

STDpvT=11
n

C
n

i=1

(pi, EOS − pi, SIM)2

Dp2
i, SIM

21/2

(10)

STDu=11
n

C
n

i=1

(ui, EOS − ui, SIM)2

Du2
i, SIM

21/2

(11)

where n denotes the number of state points, pi, EOS and ui, EOS are the results
from the EOS, while the simulation results are denoted by pi, SIM and ui, SIM

together with their statistical uncertainties Dpi, SIM and Dui, SIM. Table III
shows how these standard deviations are distributed over molecular elon-
gations L. We can see from Table III that (i) the standard deviations for
the revised EOS are distributed quite uniformly over L, i.e., accuracy of the
revised EOS does not depend on L, (ii) the revised EOS yields almost the
same accuracy as the original EOS for L < 0.67, and (iii) the original EOS badly
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Fig. 1. (a) Vapor-liquid coexistence curves and (b) vapor pressure for the 2CLJ fluids
with different reduced molecular elongations L (——, the revised EOS; N, simulation
results [9, 10, 13, 14]).
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Table III. Standard Deviations of the Pressure STDpvT and of the Internal Energy STDu

Obtained from the Original EOS [3] and the Revised EOS for Several Reduced Elongations L

STDpvT STDu

L Original EOS Revised EOS Original EOS Revised EOS

0 1.87 1.93 1.57 1.67
0.22 1.84 1.98 1.54 2.12
0.3292 1.99 2.12 2.00 2.03
0.505 1.94 2.07 1.77 2.13
0.67 2.04 2.21 1.88 1.93
0.8 > 10 2.08 > 10 1.93
1 > 50 2.11 > 50 1.86

deteriorates for L > 0.67. Overall, the revised EOS reproduces the data
with STDpvT=1.96 and STDu=2.07, and these standard deviations are
only slightly larger than those from the original EOS, namely
STDpvT=1.75 and STDu=1.93.

Second, we calculated VLE for 2CLJ fluids with L=0.0, 0.22, 0.3292,
0.505, 0.67, 0.8, and 1.0 using the revised EOS and compared them with
results from the original EOS [3] (for the cases of L [ 0.67) and from the
simulations [9, 10, 13, 14] in Figs. 1–3. In the case of the 2CLJ with
L=1.0, we also calculated VLE using the soft-SAFT EOS [15]. We used
the Kolafa and Nezbeda EOS [16], and the Mecke et al. EOS [2] to
describe monomers and the Johnson et al. [17] expression for the contact
value of the radial distribution function. In this case, we have found that (i)
use of the Kolafa and Nezbeda EOS [16] and the Mecke et al. EOS [2]
gives nearly identical results and (ii) VLE from the soft-SAFT EOS agree
very well with VLE results from both the revised EOS and GEMC simula-
tions, and differences cannot be seen within the scale of Fig. 1.

Figure 1 demonstrates the dependence of the coexistence densities and
vapor pressures on reduced elongations L. Figures 2 and 3 then show in
detail the quality of the revised EOS to describe VLE with deviation plots
of the vapor pressure and coexistence densities for two different elonga-
tions, namely: L=0.505 (Fig. 2) and L=1.0 (Fig. 3). From Fig. 2, we can
see that the accuracy of the revised EOS is very close to that of the original
EOS and also that both EOS are able to describe VLE almost within sta-
tistical uncertainties of the pseudo-experimental data. In Fig. 3 we do not
plot deviations from the original EOS since the original EOS is off by more
than 100%. Figure 3 shows that the revised EOS is able to describe the
VLE almost within statistical uncertainties of the pseudo-experimental data
also for L=1.0. (For L=0 the revised equation fits the coexisting densities
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Fig. 2. Deviation plots of the vapor pressure and coexistence densities obtained from
the revised EOS (N) and original EOS (n) [3] in comparison with the simulation
results [10] for the 2CLJ fluid with L=0.505.
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Fig. 3. Deviation plots of the vapor pressure and coexistence densities obtained
from the revised EOS (N) in comparison with the simulation results [14] for the
2CLJ fluid with L=1.0.
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and vapor pressures within the uncertainties of the simulations and with
results almost identical to the original EOS.) Corresponding conclusions
can then be drawn for intermediate elongations (not shown in the figures).

Figures 1 to 3 indicate small discrepancies between the simulation and
EOS results in the vicinity of the critical point. This is caused by three
factors: (i) the EOS does not explicitly constrain the critical point, (ii)
van der Waals-type EOS are in principle not able to precisely capture the
near-critical behavior, and (iii) simulation data in the vicinity of the critical
point are subject to large errors. Nevertheless, the revised EOS captures
reasonably well the critical-point coordinates as is demonstrated in Fig. 4,
in which we compare the critical-point parameters from the simulations [9,
10, 13, 14] and from the revised EOS for different molecular elongations.

Finally, we added to the revised EOS the dipolar term FD [18] and
calculated VLE for dipolar 2CLJ fluids with square of reduced dipole
moments mg2=9 and 12 for molecular elongations of L=0.8 and 1.0. The
calculated VLE are compared with simulation results [7] in Figs. 5 and 6.
In our previous paper [7], we showed that the original EOS with the
dipolar term failed to describe VLE for dipolar 2CLJ fluids with L > 0.67.
From Figs. 5 and 6, we can see that use of the revised EOS combined with
the FD term dramatically improves the description of these highly dipolar

Fig. 4. Critical-point parameters for the 2CLJ fluids as a function of reduced molecular
elongations L. Lines correspond to the revised EOS and marks correspond to simulation
results [9, 10, 13, 14].
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Fig. 5. Vapor-liquid coexistence curves and vapor pressures for dipolar 2CLJ fluids with the
reduced molecular elongation L=0.8 and square of reduced dipole moments mg2=9 (a, b)
and mg2=12 (c, d) (——, the revised EOS combined with the dipolar term FD [18]; – – –, the
original EOS [3] combined with the dipolar term FD [18]; N, simulation results [7]).
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Fig. 6. Vapor-liquid coexistence curves and vapor pressures for dipolar 2CLJ fluids with the
reduced molecular elongation L=1.0 and square of reduced dipole moments mg2=9 (a, b)
and mg2=12 (c, d) (——, the revised EOS combined with the dipolar term FD [18]; – – –, the
original EOS [3] combined with the dipolar term FD [18]; N, simulation results [7]).
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2CLJ fluids. In the case of dipolar 2CLJ fluids with L=0.8 (Fig. 5), simu-
lation coexistence densities are clearly represented within statistical uncer-
tainties. In the case of dipolar 2CLJ fluids with L=1.0 (Fig. 6), simulation
coexistence densities are about 2% higher than coexistence densities given
by the revised EOS combined with the FD term. In both cases, the revised
EOS combined with the FD term slightly overestimates vapor pressures.
These discrepancies must be primarily caused by the FD term, since the
revised EOS alone represents the VLE of (nonpolar) 2CLJ fluids with
L=0.8 and 1.0 within statistical uncertainties of the simulation data. The
FD term was originally constructed so as to be independent of L; never-
theless, Müller et al. [19] showed that FD is weakly dependent on L at
large dipole moments. One may also note that the coexistence curves in
Figs. 5 and 6 exhibit a somewhat unusual shape in the vicinity of the criti-
cal point, similar to the behavior observed by Kriebel et al. [20] for the
Stockmayer fluid.

5. CONCLUSIONS

A revised equation of state for two-center Lennard-Jones fluids has
been developed, based on previously published simulation data for 2CLJ
fluids with reduced elongations L=0.0, 0.22, 0.3292, 0.505, and 0.67 and
on results of recent extensive simulations for 2CLJ fluids of molecules with
elongations L=0.8 and 1.0. The revised EOS yields a very good descrip-
tion of the 2CLJ model fluid state behavior over a wide range of tempera-
tures and pressures as well as of the vapor-liquid equilibrium phase behav-
ior for the 2CLJ fluids made up of molecules with L ranging from 0.0
to 1.0. With an added dipolar term, the revised EOS leads also to substan-
tial improvement in the description of both the state and phase behavior of
the dipolar 2CLJ fluids (with square of reduced dipole moments mg2=9
and 12) made up of molecules with large elongations (up to L=1.0).
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